
1

Assembly Language 
Programming

By Dan Kohn
University of Southern Mississippi
Computer Engineering Technology

Title Block
• Contains info about the program 

and/or subroutine
Should include:
• Name of the program/routine
• Author
• Date of creation and the date of 

revision (if applicable)
• Function (what it does)
• Process (how it does the 

function if not self explanatory)
• On Call (What information 

needs to be passed to the 
program/routine and where the 
information must be located 
when the program/routine is 
started)

• Returns (where will the answer 
be stored)

Assembler Directives
The Output File Type 

Directives:

#MAKE_COM# 
#MAKE_BIN# 
#MAKE_BOOT# 
#MAKE_EXE#

You can insert these 
directives in the source 
code to specify the 
required output type 
for the file. 

ORG – Where to place 
the program in 
memory



2

Assembler Directives
The Output File Type 

Directives:

#MAKE_COM# 
#MAKE_BIN# 
#MAKE_BOOT# 
#MAKE_EXE#

You can insert these 
directives in the source 
code to specify the 
required output type 
for the file. 

Variables, arrays and strings
• Programs typically place 

numeric values, strings and 
variable space in memory at 
the top of a program. In this 
example the string “Dello 
world how are you” is place 
in memory to be used later 
on. 

• Because this is stored in 
memory you must have a 
JMP instruction to jump over 
this space and point to the 
first instruction in the 
program. 

Labels
Point to lines of code (for jump instructions and subroutines)

Operation Codes
ASM instructions (mnemonics)

Operands
Registers, constants, addresses (labels) or 

variables
Comments
Should describe WHY something is being 

done (not what it is doing – the code 
tells you that). Start with ; (semicolon)



3

Destination Operand –
where the result ends 
up

Source Operand

Program Development

Section 3.2

Program 
Development 

Cycle

[Fig 3.2 page 66]



4

Step 1 – Describe the Problem

• A programmer cannot program a solution to 
a problem until he/she understands the 
problem! 

• Divide and conquer! Break larger tasks into 
smaller ones!

Step 2 - Plan the Solution

• Algorithm - A formula or set of steps for 
solving a particular problem. To be an 
algorithm, a set of rules must be 
unambiguous and have a clear stopping 
point. Algorithms can be expressed in any 
language, from natural languages like 
English to programming languages. [They 
can also be expressed by using flowcharts].

http://www.pcwebopedia.com

Step 3 - Flowchart

http://www.smartdraw.com/resources/centers/flowcharts/tutorial1.htm



5

Flowcharting (example)

http://www.smartdraw.com/resources/centers/flowcharts/tutorial1.htm

• Step 4 – Convert flowchart to ASM code
• Step 5 – Enter code into an editor program
• Step 6 – Compile the code
• Step 7 – Debug the syntax (Repeat steps 5-7 

until it compiles)
• Step 8 – Debug the logic (repeat steps 5-8 

until the program works correctly)


